staccuracy - Standardized Accuracy and Other Model Performance Metrics
Standardized accuracy (staccuracy) is a framework for expressing accuracy scores such that 50% represents a reference level of performance and 100% is a perfect prediction. The 'staccuracy' package provides tools for creating staccuracy functions as well as some recommended staccuracy measures. It also provides functions for some classic performance metrics such as mean absolute error (MAE), root mean squared error (RMSE), and area under the receiver operating characteristic curve (AUCROC), as well as their winsorized versions when applicable.
Last updated 3 months ago
3.95 score 1 stars 2 dependents 4 scripts 460 downloadsautogam - Automate the Creation of Generalized Additive Models (GAMs)
This wrapper package for 'mgcv' makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, 'AutoGAM' tries to automate the procedure of configuring a highly accurate GAM which performs at reasonably high speed, even for large datasets.
Last updated 7 days ago
3.88 score 3 stars 3 scripts 218 downloads